/* Copyright (c) 2003-2015, CKSource - Frederico Knabben. All rights reserved. For licensing, see LICENSE.md or http://ckeditor.com/license */ (function(){var h="http://cdn.mathjax.org/mathjax/2.2-latest/MathJax.js?config=TeX-AMS_HTML";CKEDITOR.plugins.add("mathjax",{lang:"af,ar,ca,cs,cy,da,de,el,en,en-gb,eo,es,fa,fi,fr,gl,he,hr,hu,it,ja,km,ku,lt,nb,nl,no,pl,pt,pt-br,ro,ru,sk,sl,sq,sv,tr,tt,uk,vi,zh,zh-cn",requires:"widget,dialog",icons:"mathjax",hidpi:!0,init:function(b){var c=b.config.mathJaxClass||"math-tex";b.widgets.add("mathjax",{inline:!0,dialog:"mathjax",button:b.lang.mathjax.button,mask:!0,allowedContent:"span(!"+c+")",styleToAllowedContentRules:function(a){a= a.getClassesArray();if(!a)return null;a.push("!"+c);return"span("+a.join(",")+")"},pathName:b.lang.mathjax.pathName,template:'',parts:{span:"span"},defaults:{math:"\\(x = {-b \\pm \\sqrt{b^2-4ac} \\over 2a}\\)"},init:function(){var a=this.parts.span.getChild(0);if(!a||a.type!=CKEDITOR.NODE_ELEMENT||!a.is("iframe"))a=new CKEDITOR.dom.element("iframe"),a.setAttributes({style:"border:0;width:0;height:0",scrolling:"no",frameborder:0, allowTransparency:!0,src:CKEDITOR.plugins.mathjax.fixSrc}),this.parts.span.append(a);this.once("ready",function(){CKEDITOR.env.ie&&a.setAttribute("src",CKEDITOR.plugins.mathjax.fixSrc);this.frameWrapper=new CKEDITOR.plugins.mathjax.frameWrapper(a,b);this.frameWrapper.setValue(this.data.math)})},data:function(){this.frameWrapper&&this.frameWrapper.setValue(this.data.math)},upcast:function(a,b){if("span"==a.name&&a.hasClass(c)&&!(1/,'